Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 1977-1983, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38226594

RESUMO

Ethylene-forming enzyme (EFE) is an iron(II)-dependent dioxygenase that fragments 2-oxoglutarate (2OG) to ethylene (from C3 and C4) and 3 equivs of carbon dioxide (from C1, C2, and C5). This major ethylene-forming pathway requires l-arginine as the effector and competes with a minor pathway that merely decarboxylates 2OG to succinate as it oxidatively fragments l-arginine. We previously proposed that ethylene forms in a polar-concerted (Grob-like) fragmentation of a (2-carboxyethyl)carbonatoiron(II) intermediate, formed by the coupling of a C3-C5-derived propion-3-yl radical to a C1-derived carbonate coordinated to the Fe(III) cofactor. Replacement of one or both C4 hydrogens of 2OG by fluorine, methyl, or hydroxyl favored the elimination products 2-(F1-2/Me/OH)-3-hydroxypropionate and CO2 over the expected olefin or carbonyl products, implying strict stereoelectronic requirements in the final step, as is known for Grob fragmentations. Here, we substituted active-site residues expected to interact sterically with the proposed Grob intermediate, aiming to disrupt or enable the antiperiplanar disposition of the carboxylate electrofuge and carbonate nucleofuge required for concerted fragmentation. The bulk-increasing A198L substitution barely affects the first partition between the major and minor pathways but then, as intended, markedly diminishes ethylene production in favor of 3-hydroxypropionate. Conversely, the bulk-diminishing L206V substitution enables propylene formation from (4R)-methyl-2OG, presumably by allowing the otherwise sterically disfavored antiperiplanar conformation of the Grob intermediate bearing the extra methyl group. The results provide additional evidence for a polar-concerted ethylene-yielding step and thus for the proposed radical-polar crossover via substrate-radical coupling to the Fe(III)-coordinated carbonate.


Assuntos
Alcenos , Etilenos , Compostos Férricos , Ácido Láctico/análogos & derivados , Liases , Etilenos/química , Arginina/metabolismo , Domínio Catalítico , Carbonatos
2.
Biochemistry ; 62(16): 2480-2491, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37542461

RESUMO

An aliphatic halogenase requires four substrates: 2-oxoglutarate (2OG), halide (Cl- or Br-), the halogenation target ("prime substrate"), and dioxygen. In well-studied cases, the three nongaseous substrates must bind to activate the enzyme's Fe(II) cofactor for efficient capture of O2. Halide, 2OG, and (lastly) O2 all coordinate directly to the cofactor to initiate its conversion to a cis-halo-oxo-iron(IV) (haloferryl) complex, which abstracts hydrogen (H•) from the non-coordinating prime substrate to enable radicaloid carbon-halogen coupling. We dissected the kinetic pathway and thermodynamic linkage in binding of the first three substrates of the l-lysine 4-chlorinase, BesD. After addition of 2OG, subsequent coordination of the halide to the cofactor and binding of cationic l-Lys near the cofactor are associated with strong heterotropic cooperativity. Progression to the haloferryl intermediate upon the addition of O2 does not trap the substrates in the active site and, in fact, markedly diminishes cooperativity between halide and l-Lys. The surprising lability of the BesD•[Fe(IV)=O]•Cl•succinate•l-Lys complex engenders pathways for decay of the haloferryl intermediate that do not result in l-Lys chlorination, especially at low chloride concentrations; one identified pathway involves oxidation of glycerol. The mechanistic data imply (i) that BesD may have evolved from a hydroxylase ancestor either relatively recently or under weak selective pressure for efficient chlorination and (ii) that acquisition of its activity may have involved the emergence of linkage between l-Lys binding and chloride coordination following the loss of the anionic protein-carboxylate iron ligand present in extant hydroxylases.


Assuntos
Cloretos , Lisina , Oxigenases de Função Mista/química , Ferro/química , Oxirredução , Oxigênio/química
3.
Proc Natl Acad Sci U S A ; 120(33): e2303860120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552760

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uses an RNA-dependent RNA polymerase along with several accessory factors to replicate its genome and transcribe its genes. Nonstructural protein (nsp) 13 is a helicase required for viral replication. Here, we found that nsp13 ligates iron, in addition to zinc, when purified anoxically. Using inductively coupled plasma mass spectrometry, UV-visible absorption, EPR, and Mössbauer spectroscopies, we characterized nsp13 as an iron-sulfur (Fe-S) protein that ligates an Fe4S4 cluster in the treble-clef metal-binding site of its zinc-binding domain. The Fe-S cluster in nsp13 modulates both its binding to the template RNA and its unwinding activity. Exposure of the protein to the stable nitroxide TEMPOL oxidizes and degrades the cluster and drastically diminishes unwinding activity. Thus, optimal function of nsp13 depends on a labile Fe-S cluster that is potentially targetable for COVID-19 treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19 , DNA Helicases/metabolismo , RNA , Enxofre , Proteínas não Estruturais Virais/metabolismo , RNA Helicases/genética
4.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205437

RESUMO

An aliphatic halogenase requires four substrates: 2-oxoglutarate (2OG), halide (Cl - or Br - ), the halogenation target ("prime substrate"), and dioxygen. In well-studied cases, the three non-gaseous substrates must bind to activate the enzyme's Fe(II) cofactor for efficient capture of O 2 . Halide, 2OG, and (lastly) O 2 all coordinate directly to the cofactor to initiate its conversion to a cis -halo-oxo-iron(IV) (haloferryl) complex, which abstracts hydrogen (H•) from the non-coordinating prime substrate to enable radicaloid carbon-halogen coupling. We dissected the kinetic pathway and thermodynamic linkage in binding of the first three substrates of the l -lysine 4-chlorinase, BesD. After 2OG adds, subsequent coordination of the halide to the cofactor and binding of cationic l -Lys near the cofactor are associated with strong heterotropic cooperativity. Progression to the haloferryl intermediate upon addition of O 2 does not trap the substrates in the active site and, in fact, markedly diminishes cooperativity between halide and l -Lys. The surprising lability of the BesD•[Fe(IV)=O]•Cl•succinate• l -Lys complex engenders pathways for decay of the haloferryl intermediate that do not result in l -Lys chlorination, especially at low chloride concentrations; one identified pathway involves oxidation of glycerol. The mechanistic data imply that (i) BesD may have evolved from a hydroxylase ancestor either relatively recently or under weak selective pressure for efficient chlorination and (ii) that acquisition of its activity may have involved the emergence of linkage between l -Lys binding and chloride coordination following loss of the anionic protein-carboxylate iron ligand present in extant hydroxylases.

5.
Chembiochem ; 23(13): e202200081, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35482316

RESUMO

LolO, a 2-oxoglutarate-dependent nonheme Fe oxygenase, catalyzes both the hydroxylation of 1-exo-acetamidopyrrolizidine (AcAP), a pathway intermediate in the biosynthesis of the loline alkaloids, and the cycloetherification of the resulting alcohol. We have prepared fluorinated AcAP analogues to aid in continued mechanistic investigation of the remarkable LolO-catalyzed cycloetherification step. LolO was able to hydroxylate 6,6-difluoro-AcAP (prepared from N,O-protected 4-oxoproline) and then cycloetherify the resulting alcohol, forming a difluorinated analogue of N-acetylnorloline and providing evidence for a cycloetherification mechanism involving a C(7) radical as opposed to a C(7) carbocation. By contrast, LolO was able to hydroxylate 7,7-difluoro-AcAP (prepared from 3-oxoproline) but failed to cycloetherify it, forming (1R,2R,8S)-7,7-difluoro-2-hydroxy-AcAP as the sole product. The divergent LolO-catalyzed reactions of the difluorinated AcAP analogues provide insight into the LolO cycloetherification mechanism and indicate that the 7,7-difluorinated compound, in particular, may be a useful tool to accumulate and characterize the iron intermediate that initiates the cycloetherification reaction.


Assuntos
Ácidos Cetoglutáricos , Oxigenases , Catálise , Ferro , Oxirredução
6.
Biochemistry ; 61(8): 689-702, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380785

RESUMO

The enzyme BesC from the ß-ethynyl-l-serine biosynthetic pathway in Streptomyces cattleya fragments 4-chloro-l-lysine (produced from l-Lysine by BesD) to ammonia, formaldehyde, and 4-chloro-l-allylglycine and can analogously fragment l-Lys itself. BesC belongs to the emerging family of O2-activating non-heme-diiron enzymes with the "heme-oxygenase-like" protein fold (HDOs). Here, we show that the binding of l-Lys or an analogue triggers capture of O2 by the protein's diiron(II) cofactor to form a blue µ-peroxodiiron(III) intermediate analogous to those previously characterized in two other HDOs, the olefin-installing fatty acid decarboxylase, UndA, and the guanidino-N-oxygenase domain of SznF. The ∼5- and ∼30-fold faster decay of the intermediate in reactions with 4-thia-l-Lys and (4RS)-chloro-dl-lysine than in the reaction with l-Lys itself and the primary deuterium kinetic isotope effects (D-KIEs) on decay of the intermediate and production of l-allylglycine in the reaction with 4,4,5,5-[2H4]-l-Lys suggest that the peroxide intermediate or a reversibly connected successor complex abstracts a hydrogen atom from C4 to enable olefin formation. Surprisingly, the sluggish substrate l-Lys can dissociate after triggering intermediate formation, thereby allowing one of the better substrates to bind and react. The structure of apo BesC and the demonstrated linkage between Fe(II) and substrate binding suggest that the triggering event involves an induced ordering of ligand-providing helix 3 (α3) of the conditionally stable HDO core. As previously suggested for SznF, the dynamic α3 also likely initiates the spontaneous degradation of the diiron(III) product cluster after decay of the peroxide intermediate, a trait emerging as characteristic of the nascent HDO family.


Assuntos
Heme Oxigenase (Desciclizante) , Oxirredutases , Alilglicina , Heme , Lisina , Oxirredutases/metabolismo , Oxigênio/metabolismo , Oxigenases/química , Peróxidos
7.
Proc Natl Acad Sci U S A ; 119(13): e2123566119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320042

RESUMO

SignificanceMethanobactins (Mbns), copper-binding peptidic compounds produced by some bacteria, are candidate therapeutics for human diseases of copper overload. The paired oxazolone-thioamide bidentate ligands of methanobactins are generated from cysteine residues in a precursor peptide, MbnA, by the MbnBC enzyme complex. MbnBC activity depends on the presence of iron and oxygen, but the catalytically active form has not been identified. Here, we provide evidence that a dinuclear Fe(II)Fe(III) center in MbnB, which is the only representative of a >13,000-member protein family to be characterized, is responsible for this reaction. These findings expand the known roles of diiron enzymes in biology and set the stage for mechanistic understanding, and ultimately engineering, of the MbnBC biosynthetic complex.


Assuntos
Cisteína , Oxazolona , Cobre/metabolismo , Compostos Férricos/química , Humanos , Imidazóis , Oligopeptídeos , Oxigênio/metabolismo , Tioamidas
8.
ACS Catal ; 12(12): 6968-6979, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37744570

RESUMO

Important bioactive natural products, including prostaglandin H2 and artemisinin, contain reactive endoperoxides. Known enzymatic pathways for endoperoxide installation require multiple hydrogen-atom transfers (HATs). For example, iron(II)- and 2-oxoglutarate-dependent verruculogen synthase (FtmOx1; EC 1.14.11.38) mediates HAT from aliphatic C21 of fumitremorgin B, capture of O2 by the C21 radical (C21•), addition of the peroxyl radical (C21-O-O•) to olefinic C27, and HAT to the resultant C26•. Recent studies proposed conflicting roles for FtmOx1 tyrosine residues, Tyr224 and Tyr68, in the HATs from C21 and to C26•. Here, analysis of variant proteins bearing a ring-halogenated tyrosine or (amino)phenylalanine in place of either residue establishes that Tyr68 is the hydrogen donor to C26•, while Tyr224 has no essential role. The radicals that accumulate rapidly in FtmOx1 variants bearing a HAT-competent tyrosine analog at position 68 exhibit hypsochromically shifted absorption and, in cases of fluorine substitution, 19F-coupled electron-paramagnetic-resonance (EPR) spectra. By contrast, functional Tyr224-substituted variants generate radicals with unaltered light-absorption and EPR signatures as they produce verruculogen. The alternative major product of the Tyr68Phe variant, which forms competitively with verruculogen also in wild-type FtmOx1 in 2H2O and in the variant with the less readily oxidized 2,3-F2Tyr at position 68, is identified by mass spectrometry and isotopic labeling as the 26-hydroxy-21,27-endoperoxide compound formed after capture of another equivalent of O2 by the longer lived C26•. The results highlight the considerable chemical challenges the enzyme must navigate in averting both oxygen rebound and a second O2 coupling to obtain verruculogen selectively over other possible products.

9.
Science ; 373(6562): 1489-1493, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34385355

RESUMO

Microbial ethylene-forming enzyme (EFE) converts the C3­C4 fragment of the ubiquitous primary metabolite 2-oxoglutarate (2OG) to its namesake alkene product. This reaction is very different from the simple decarboxylation of 2OG to succinate promoted by related enzymes and has inspired disparate mechanistic hypotheses. We show that EFE produces stereochemically random (equal cis and trans) 1,2-[2H2]-ethylene from (3S,4R)-[2H2]-2OG, appends an oxygen from O2 on the C1-derived (bi)carbonate, and can be diverted to ω-hydroxylated monoacid products by modifications to 2OG or the enzyme. These results implicate an unusual radical-polar hybrid mechanism involving iron(II)-coordinated acylperoxycarbonate and alkylcarbonate intermediates. The mechanism explains how EFE accesses a high-energy carboxyl radical to initiate its fragmentation cascade, and it hints at capabilities of 2OG-dependent enzymes that may await discovery and exploitation.

10.
Science ; 373(6551): 236-241, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34083449

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes. We found that the catalytic subunit of the RdRp, nsp12, ligates two iron-sulfur metal cofactors in sites that were modeled as zinc centers in the available cryo-electron microscopy structures of the RdRp complex. These metal binding sites are essential for replication and for interaction with the viral helicase. Oxidation of the clusters by the stable nitroxide TEMPOL caused their disassembly, potently inhibited the RdRp, and blocked SARS-CoV-2 replication in cell culture. These iron-sulfur clusters thus serve as cofactors for the SARS-CoV-2 RdRp and are targets for therapy of COVID-19.


Assuntos
Coenzimas/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/química , Óxidos N-Cíclicos/farmacologia , Ferro/metabolismo , SARS-CoV-2/efeitos dos fármacos , Enxofre/metabolismo , Motivos de Aminoácidos , Animais , Antivirais/farmacologia , Sítios de Ligação , Domínio Catalítico , Chlorocebus aethiops , Coenzimas/química , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Inibidores Enzimáticos/farmacologia , Ferro/química , Domínios Proteicos , RNA Helicases/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia , Marcadores de Spin , Enxofre/química , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Zinco/metabolismo
11.
J Am Chem Soc ; 143(5): 2293-2303, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33522811

RESUMO

Ethylene-forming enzyme (EFE) is an ambifunctional iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase. In its major (EF) reaction, it converts carbons 1, 2, and 5 of 2OG to CO2 and carbons 3 and 4 to ethylene, a four-electron oxidation drastically different from the simpler decarboxylation of 2OG to succinate mediated by all other Fe/2OG enzymes. EFE also catalyzes a minor reaction, in which the normal decarboxylation is coupled to oxidation of l-arginine (a required activator for the EF pathway), resulting in its conversion to l-glutamate semialdehyde and guanidine. Here we show that, consistent with precedent, the l-Arg-oxidation (RO) pathway proceeds via an iron(IV)-oxo (ferryl) intermediate. Use of 5,5-[2H2]-l-Arg slows decay of the ferryl complex by >16-fold, implying that RO is initiated by hydrogen-atom transfer (HAT) from C5. That this large substrate deuterium kinetic isotope effect has no impact on the EF:RO partition ratio implies that the same ferryl intermediate cannot be on the EF pathway; the pathways must diverge earlier. Consistent with this conclusion, the variant enzyme bearing the Asp191Glu ligand substitution accumulates ∼4 times as much of the ferryl complex as the wild-type enzyme and exhibits a ∼40-fold diminished EF:RO partition ratio. The selective detriment of this nearly conservative substitution to the EF pathway implies that it has unusually stringent stereoelectronic requirements. An active-site, like-charge guanidinium pair, which involves the l-Arg substrate/activator and is unique to EFE among four crystallographically characterized l-Arg-modifying Fe/2OG oxygenases, may serve to selectively stabilize the transition state leading to the unique EF branch.


Assuntos
Arginina/química , Ferro/química , Ácidos Cetoglutáricos/metabolismo , Oxigenases/metabolismo , Modelos Moleculares , Oxirredução , Oxigenases/química , Conformação Proteica
12.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468680

RESUMO

In biosynthesis of the pancreatic cancer drug streptozotocin, the tridomain nonheme-iron oxygenase SznF hydroxylates Nδ and Nω' of Nω-methyl-l-arginine before oxidatively rearranging the triply modified guanidine to the N-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the monoiron cofactor in the enzyme's C-terminal cupin domain, which promotes the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in the N-hydroxylating heme-oxygenase-like (HO-like) central domain. We leveraged our recent observation that the N-oxygenating µ-peroxodiiron(III/III) intermediate can form in the HO-like domain after the apo protein self-assembles its diiron(II/II) cofactor to solve structures of SznF with both of its iron cofactors bound. These structures of a biochemically validated member of the emerging heme-oxygenase-like diiron oxidase and oxygenase (HDO) superfamily with intact diiron cofactor reveal both the large-scale conformational change required to assemble the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability-a trait shared by the other validated HDOs. During cofactor (dis)assembly, a ligand-harboring core helix dynamically (un)folds. The diiron cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulations. The additional carboxylate ligand is conserved in another N-oxygenating HDO but not in two HDOs that cleave carbon-hydrogen and carbon-carbon bonds to install olefins. Among ∼9,600 sequences identified bioinformatically as members of the emerging HDO superfamily, ∼25% conserve this additional carboxylate residue and are thus tentatively assigned as N-oxygenases.


Assuntos
Heme Oxigenase (Desciclizante)/ultraestrutura , Ferroproteínas não Heme/ultraestrutura , Oxigenases/ultraestrutura , Estreptozocina/química , Catálise/efeitos dos fármacos , Cristalografia por Raios X , Heme Oxigenase (Desciclizante)/química , Humanos , Ligantes , Compostos de Nitrosoureia/toxicidade , Ferroproteínas não Heme/química , Oxirredução , Oxigênio/química , Oxigenases/química , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Estreptozocina/toxicidade
13.
Nat Commun ; 11(1): 6310, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298951

RESUMO

Heme biosynthesis and iron-sulfur cluster (ISC) biogenesis are two major mammalian metabolic pathways that require iron. It has long been known that these two pathways interconnect, but the previously described interactions do not fully explain why heme biosynthesis depends on intact ISC biogenesis. Herein we identify a previously unrecognized connection between these two pathways through our discovery that human aminolevulinic acid dehydratase (ALAD), which catalyzes the second step of heme biosynthesis, is an Fe-S protein. We find that several highly conserved cysteines and an Ala306-Phe307-Arg308 motif of human ALAD are important for [Fe4S4] cluster acquisition and coordination. The enzymatic activity of human ALAD is greatly reduced upon loss of its Fe-S cluster, which results in reduced heme biosynthesis in human cells. As ALAD provides an early Fe-S-dependent checkpoint in the heme biosynthetic pathway, our findings help explain why heme biosynthesis depends on intact ISC biogenesis.


Assuntos
Heme/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Sintase do Porfobilinogênio/metabolismo , Enxofre/metabolismo , Motivos de Aminoácidos , Vias Biossintéticas , Linhagem Celular , Coenzimas/metabolismo , Cisteína/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Sintase do Porfobilinogênio/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Am Chem Soc ; 142(44): 18886-18896, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33103886

RESUMO

The α-ketoglutarate (αKG)-dependent oxygenases catalyze a diverse range of chemical reactions using a common high-spin FeIV═O intermediate that, in most reactions, abstract a hydrogen atom from the substrate. Previously, the FeIV═O intermediate in the αKG-dependent halogenase SyrB2 was characterized by nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations, which demonstrated that it has a trigonal-pyramidal geometry with the scissile C-H bond of the substrate calculated to be perpendicular to the Fe-O bond. Here, we have used NRVS and DFT calculations to show that the FeIV═O complex in taurine dioxygenase (TauD), the αKG-dependent hydroxylase in which this intermediate was first characterized, also has a trigonal bipyramidal geometry but with an aspartate residue replacing the equatorial halide of the SyrB2 intermediate. Computational analysis of hydrogen atom abstraction by square pyramidal, trigonal bipyramidal, and six-coordinate FeIV═O complexes in two different substrate orientations (one more along [σ channel] and another more perpendicular [π channel] to the Fe-O bond) reveals similar activation barriers. Thus, both substrate approaches to all three geometries are competent in hydrogen atom abstraction. The equivalence in reactivity between the two substrate orientations arises from compensation of the promotion energy (electronic excitation within the d manifold) required to access the π channel by the significantly larger oxyl character present in the pπ orbital oriented toward the substrate, which leads to an earlier transition state along the C-H coordinate.


Assuntos
Hidrogênio/química , Ferro/química , Oxigênio/química , Catálise , Teoria da Densidade Funcional , Dioxigenases/química , Dioxigenases/metabolismo , Hidrogênio/metabolismo , Ácidos Cetoglutáricos/química , Espectroscopia de Ressonância Magnética
15.
Biochemistry ; 59(26): 2432-2441, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32516526

RESUMO

Specifier proteins (SPs) are components of the glucosinolate-myrosinase defense system found in plants of the order Brassicales (brassicas). Glucosinolates (GLSs) comprise at least 150 known S-(ß-d-glucopyranosyl)thiohydroximate-O-sulfonate compounds, each with a distinguishing side chain linked to the central carbon. Following tissue injury, the enzyme myrosinase (MYR) promiscuously hydrolyzes the common thioglycosidic linkage of GLSs to produce unstable aglycone intermediates, which can readily undergo a Lossen-like rearrangement to the corresponding organoisothiocyanates. The known SPs share a common protein architecture but redirect the breakdown of aglycones to different stable products: epithionitrile (ESP), nitrile (NSP), or thiocyanate (TFP). The different effects of these products on brassica consumers motivate efforts to understand the defense response in chemical detail. Experimental analysis of SP mechanisms is challenged by the instability of the aglycones and would be facilitated by knowledge of their lifetimes. We developed a spectrophotometric method that we used to monitor the rearrangement reactions of the MYR-generated aglycones from nine GLSs, discovering that their half-lives (t1/2) vary by a factor of more than 50, from <3 to 150 s (22 °C). The t1/2 of the sinigrin-derived allyl aglycone (34 s), which can form the epithionitrile product (1-cyano-2,3-epithiopropane) in the presence of ESP, proved to be sufficient to enable spatial and temporal separation of the MYR and ESP reactions. The results confirm recent proposals that ESP is an autonomous iron-dependent enzyme that intercepts the unstable aglycone rather than a direct effector of MYR. Knowledge of aglycone lifetimes will enable elucidation of how the various SPs reroute aglycones to different products.


Assuntos
Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Sinapis/metabolismo , Glucosinolatos/genética , Proteínas de Plantas/genética , Sinapis/genética
16.
J Am Chem Soc ; 142(27): 11818-11828, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511919

RESUMO

The alkylating warhead of the pancreatic cancer drug streptozotocin (SZN) contains an N-nitrosourea moiety constructed from Nω-methyl-l-arginine (l-NMA) by the multi-domain metalloenzyme SznF. The enzyme's central heme-oxygenase-like (HO-like) domain sequentially hydroxylates Nδ and Nω' of l-NMA. Its C-terminal cupin domain then rearranges the triply modified arginine to Nδ-hydroxy-Nω-methyl-Nω-nitroso-l-citrulline, the proposed donor of the functional pharmacophore. Here we show that the HO-like domain of SznF can bind Fe(II) and use it to capture O2, forming a peroxo-Fe2(III/III) intermediate. This intermediate has absorption- and Mössbauer-spectroscopic features similar to those of complexes previously trapped in ferritin-like diiron oxidases and oxygenases (FDOs) and, more recently, the HO-like fatty acid oxidase UndA. The SznF peroxo-Fe2(III/III) complex is an intermediate in both hydroxylation steps, as shown by the concentration-dependent acceleration of its decay upon exposure to either l-NMA or Nδ-hydroxy-Nω-methyl-l-Arg (l-HMA). The Fe2(III/III) cluster produced upon decay of the intermediate has a small Mössbauer quadrupole splitting parameter, implying that, unlike the corresponding product states of many FDOs, it lacks an oxo-bridge. The subsequent decomposition of the product cluster to one or more paramagnetic Fe(III) species over several hours explains why SznF was previously purified and crystallographically characterized without its cofactor. Programmed instability of the oxidized form of the cofactor appears to be a unifying characteristic of the emerging superfamily of HO-like diiron oxidases and oxygenases (HDOs).


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Metaloproteínas/metabolismo , Compostos de Nitrosoureia/metabolismo , Estreptozocina/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Compostos Férricos/química , Hidroxilação , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Compostos de Nitrosoureia/química , Streptomyces/enzimologia , Estreptozocina/química
17.
J Inorg Biochem ; 203: 110877, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710865

RESUMO

Ferritin-like carboxylate-bridged non-heme diiron enzymes activate O2 for a variety of difficult reactions throughout nature. These reactions often begin by abstraction of hydrogen from strong CH bonds. The enzymes activate O2 at their diferrous cofactors to form canonical diferric peroxo intermediates, with a range of possible coordination modes. Herein, we explore the ability of high-energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) to provide insight into the nature of peroxo level intermediates in non-heme diiron proteins. Freeze quenched (FQ) peroxo intermediates from p-aminobenzoate N-oxygenase (AurF), aldehyde-deformylating oxygenase (ADO), and the ß subunit of class Ia ribonucleotide reductase from Escherichia coli (Ecß) are investigated. All three intermediates are proposed to adopt different peroxo binding modes, and each exhibit different Fe Kα HERFD XAS pre-edge features and intensities. As these FQ-trapped samples consist of multiple species, deconvolution of HERFD XAS spectra based on speciation, as determined by Mössbauer spectroscopy, is also necessitated - yielding 'pure' diferric peroxo HERFD XAS spectra from dilute protein samples. Finally, the impact of a given peroxo coordination mode on the HERFD XAS pre-edge energy and intensity is evaluated through time-dependent density functional theory (TDDFT) calculations of the XAS spectra on a series of hypothetical model complexes, which span a full range of possible peroxo coordination modes to a diferric core. The utility of HERFD XAS for future studies of enzymatic intermediates is discussed.


Assuntos
Proteínas de Bactérias/química , Ferro/química , Oxigenases/química , Peróxidos/química , Ribonucleotídeo Redutases/química , Teoria da Densidade Funcional , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Modelos Químicos , Oxirredução , Oxigênio/química , Espectroscopia por Absorção de Raios X
18.
J Am Chem Soc ; 141(51): 20397-20406, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769979

RESUMO

(S)-2-Hydroxypropylphosphonate [(S)-2-HPP, 1] epoxidase (HppE) reduces H2O2 at its nonheme-iron cofactor to install the oxirane "warhead" of the antibiotic fosfomycin. The net replacement of the C1 pro-R hydrogen of 1 by its C2 oxygen, with inversion of configuration at C1, yields the cis-epoxide of the drug [(1R,2S)-epoxypropylphosphonic acid (cis-Fos, 2)]. Here we show that HppE achieves ∼95% selectivity for C1 inversion and cis-epoxide formation via steric guidance of a radical-coupling mechanism. Published structures of the HppE·FeII·1 and HppE·ZnII·2 complexes reveal distinct pockets for C3 of the substrate and product and identify four hydrophobic residues-Leu120, Leu144, Phe182, and Leu193-close to C3 in one of the complexes. Replacement of Leu193 in the substrate C3 pocket with the bulkier Phe enhances stereoselectivity (cis:trans ∼99:1), whereas the Leu120Phe substitution in the product C3 pocket diminishes it (∼82:18). Retention of C1 configuration and trans-epoxide formation become predominant with the bulk-reducing Phe182Ala substitution in the substrate C3 pocket (∼13:87), trifluorination of C3 (∼23:77), or both (∼1:99). The effect of C3 trifluorination is counteracted by the more constrained substrate C3 pockets in the Leu193Phe (∼56:44) and Leu144Phe/Leu193Phe (∼90:10) variants. The ability of HppE to epoxidize substrate analogues bearing halogens at C3, C1, or both is inconsistent with a published hypothesis of polar cyclization via a C1 carbocation. Rather, specific enzyme-substrate contacts drive inversion of the C1 radical-as proposed in a recent computational study-to direct formation of the more potently antibacterial cis-epoxide by radicaloid C-O coupling.


Assuntos
Compostos de Epóxi/metabolismo , Fosfomicina/biossíntese , Oxirredutases/metabolismo , Compostos de Epóxi/química , Fosfomicina/química , Radicais Livres/química , Radicais Livres/metabolismo , Conformação Molecular , Oxirredutases/química , Oxirredutases/genética , Estereoisomerismo
19.
J Am Chem Soc ; 141(37): 14510-14514, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31487162

RESUMO

The iron-dependent oxidase UndA cleaves one C3-H bond and the C1-C2 bond of dodecanoic acid to produce 1-undecene and CO2. A published X-ray crystal structure showed that UndA has a heme-oxygenase-like fold, thus associating it with a structural superfamily that includes known and postulated non-heme diiron proteins, but revealed only a single iron ion in the active site. Mechanisms proposed for initiation of decarboxylation by cleavage of the C3-H bond using a monoiron cofactor to activate O2 necessarily invoked unusual or potentially unfeasible steps. Here we present spectroscopic, crystallographic, and biochemical evidence that the cofactor of Pseudomonas fluorescens Pf-5 UndA is actually a diiron cluster and show that binding of the substrate triggers rapid addition of O2 to the Fe2(II/II) cofactor to produce a transient peroxo-Fe2(III/III) intermediate. The observations of a diiron cofactor and substrate-triggered formation of a peroxo-Fe2(III/III) intermediate suggest a small set of possible mechanisms for O2, C3-H and C1-C2 activation by UndA; these routes obviate the problematic steps of the earlier hypotheses that invoked a single iron.


Assuntos
Compostos de Ferro/química , Oxirredutases/metabolismo , Peróxidos/química , Descarboxilação , Pseudomonas fluorescens/enzimologia , Especificidade por Substrato
20.
Biochemistry ; 58(41): 4218-4223, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31503454

RESUMO

Iron(II)- and 2-(oxo)-glutarate-dependent (Fe/2OG) oxygenases catalyze a diverse array of oxidation reactions via a common iron(IV)-oxo (ferryl) intermediate. Although the intermediate has been characterized spectroscopically, its short lifetime has precluded crystallograhic characterization. In solution, the ferryl was first observed directly in the archetypal Fe/2OG hydroxylase, taurine:2OG dioxygenase (TauD). Here, we substitute the iron cofactor of TauD with the stable vanadium(IV)-oxo (vanadyl) ion to obtain crystal structures mimicking the key ferryl complex. Intriguingly, whereas the structure of the TauD·(VIV-oxo)·succinate·taurine complex exhibits the expected orientation of the V≡O bond-trans to the His255 ligand and toward the C-H bond to be cleaved, in what has been termed the in-line configuration-the TauD·(VIV-oxo) binary complex is best modeled with its oxo ligand trans to Asp101. This off-line-like configuration is similar to one recently posited as a means to avoid hydroxylation in Fe/2OG enzymes that direct other outcomes, though neither has been visualized in an Fe/2OG structure to date. Whereas an off-line (trans to the proximal His) or off-line-like (trans to the carboxylate ligand) ferryl is unlikely to be important in the hydroxylation reaction of TauD, the observation that the ferryl may deviate from an in-line orientation in the absence of the primary substrate may explain the enzyme's mysterious self-hydroxylation behavior, should the oxo ligand lie trans to His99. This finding reinforces the potential for analogous functional off-line oxo configurations in halogenases, desaturases, and/or cyclases.


Assuntos
Ferro/química , Oxigenases de Função Mista/química , Mimetismo Molecular , Vanadatos/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Ligação de Hidrogênio , Hidroxilação , Oxigenases de Função Mista/isolamento & purificação , Estrutura Secundária de Proteína , Ácido Succínico/química , Taurina/química , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...